I. Knot Theory
A. Knots and Links

Recall a knot is the image of an embedding

$$
f: S^{1} \hookrightarrow \mathbb{R}^{3}
$$

(for now f a smooth embedding)

$$
\text { so } K=\operatorname{in}(t) \text { a knot }
$$

we say 2 knots K_{0} and K_{1} are isotopic if there is a smooth map

$$
H: S^{\prime} \times[0,1] \longrightarrow \mathbb{R}^{3}
$$

such that

1) $\operatorname{im}\left(H /_{S^{\prime} \times\{i\}}\right)=k_{i} \quad \tau=0,1$
2) $\left.H\right|_{s^{\prime} x\{+\}}: s^{\prime} \rightarrow \mathbb{R}^{3}$ is an embedding $\forall t \in[0,1]$
the idea is that you can smoothly deform K_{0} into K_{1}
(ne. If K_{0} is made out of string, you can move it around to get K_{1})
when we say 2 knots are "the same" we mean they are isotopic knots are frequently studied via their diagrams
let $\rho: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}:(x, y, z) \mapsto(x, y)$ be projection given a knot K one can show it can be isotoped (by a very small amount) such that
3) Polk is an immersion (that is derivative non zero) so you can't see

$$
\Lambda \text { cOrners } \rightarrow<
$$

2) $\left.P\right|_{K}$ has no n-tuple points for $n \geq 3$
don't see

3) at each douple point the two arcs of K in tersect transversely \rightarrow (tangent vectors of arcs a double point span \mathbb{R}^{2})
don't see
(to prove this need "jet transvensality" or PL-topology, beyond
this course, but hopefully believable)
a diagram $D(K)$ of K is
4) $p(K) \subset \mathbb{R}^{2}$ and
5) at each double point lable which strand goes oven the other one
(ne. which has the greater z-coordinate)
examples:
6)

2)

exercise: Show a knot diagram D determines a unique knot in \mathbb{R}^{3} upto isotopy
we have an amazing theorem
Reidemeister's Th ${ }^{m}$:
let K_{0} and K_{1}, be knots with diagrams D_{0} and D_{1}
Then K_{0} is isotopic to $K_{1} \Leftrightarrow D_{0}$ is related to D_{1} by a sequence of
o) deformations where crossings don't change
I)

(this means, if you see a piece of the diagram looking like one side you can replace it with the other)
II)

III)

(and reflections of these about coordinate planes)
note that (\Leftarrow) should be clear
\Leftrightarrow) takes some work
(to prove need "parametric jet transversality" or PL-topology)
example:

A link is just a disjoint union of knots
B. Knot coloring

So how can you tell it two knots are different? here is a very simple way
we say a knot diagram D is 3-colorable if you can color the strands of D with 3 colors so that
(a) at each crossing either all 3 colors are used or only 1 is used
(b) at least 2 colors are used
examples:
1)

U unknot U is not 3-colorable
2)

the trefoil T is 3-colorable
exercise:
(1) $\begin{aligned} & \text { show the "figure 8" knot } \\ & \text { is not } 3 \text {-colorable }\end{aligned}$

Thㅡㅡㄱ:
If one diagram for a knot is 3-colorable
then all diagrams are
(so being 3-colorable is a property of the knot, not just the diagram)

Remark: So from above we see the trefoil T is different from the unknot U and figure $8, F$
Proof:
we just need to check 3-colorability is unchanged under Reidemeister moves
I)

so (a) true and (b) true for one \Leftrightarrow true for the other
II) either

so @ true and (b) true for one \Leftrightarrow true for othe

III) lots of cases
here is one

exercise: check all other cases
more generally we say a diagram (and knot) is p-labelable for p a prime, if we can label the strands with numbers $0,1, \ldots, p-1$ so that
(a) at each crossing, the overcrossing label is the mod p average of the labels of the undercrossings
(b) at least 2 labels are used
 $2 x \equiv y+z \bmod p$
exercise: Prove the analog of $T^{\underline{m}} 1$ for p-labeling
examples:

1) a 3-coloring is a 3-labeling
let red $=0$ blue $=1$ green $=2$

$2 \cdot 2=4$
$\equiv 0+1 \bmod 3$

$2 \cdot 1=2$
$\equiv 2+0 \mathrm{mod} 3$

$\equiv 1+2 \bmod 3$
2) $3^{3} 0$ is a 5 -labeling of F so F is not isotopic to U
later in the course we will see how coloring/labeling is related to really cool topology!
(dihedral representations of the fundamental group of the knot complement)
C. Alexander polynomial
with a direction on each component
later we will prove that to any link K we can associate a (Laurent) polynomial, in the variable $t^{1 / 2}, \Delta_{K}(t)$ with integer coefficients (this means $\Delta_{k}(t)$ has the form $a_{n} t^{n / 2}+a_{n+1} t^{n+1 / 2}+\ldots+a_{m} t^{m /}$ where $n \leq m$, and a_{i} are integers) (when K a knot, $\Delta_{K}(t)$ only has integer powers of t)
such that A) K isotopic to K^{\prime}, then $\Delta_{K}(t)=\Delta_{K^{\prime}}(t)$
B) if K_{+}, K_{-}, and K_{0} have diagrams related by
this is called a
skein relation

then $\Delta_{k_{+}}-\Delta_{K_{-}}+\left(t^{-1 / 2} t^{1 / 2}\right) \Delta_{K_{0}}=0$
c) $\Delta_{\text {unknot }}=1$
$\Delta_{K}(t)$ is called the (Conway normalized) Alexander polynomial of K
lemma 2:
If K has a diagram $D(K)$ with 2 components that are separated by a line then $\Delta_{k}=0$

Remark: This says Δ_{k} can detect something interesting about links.
example: Compute Δ_{H} for $H=$ CD

$\Delta_{K_{-}}=0$ by lemma $\Delta_{K_{0}}=1$ by c)
So by B)

$$
\begin{aligned}
& \Delta_{K_{+}}-\Delta_{K_{-}}+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta_{K_{0}}=0 \\
& \Delta_{H}-0+\left(t^{-1 / 2} t^{1 / 2}\right) 1=0 \\
& \text { so } \Delta_{H}(t)=t^{1 / 2}-t^{-1 / 2}
\end{aligned}
$$

Remark: So we see by the lemma that the 2 componants of H cant be polled appart!
(this is "obvious", but can you come up with an easier proof? there is one but its not that much easier)
Proof of lemma:
we have $K=$
 orient components so you see picture
let $D(K)=D\left(k_{0}\right)$

So
 and $D\left(K_{-}\right)=k_{1} \rightarrow k_{2}$
note:

$$
D\left(K_{t}\right)
$$

so by B) in definition

$$
\underbrace{\Delta_{0}-\Delta_{K_{-}}}_{K_{0}^{11}}+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta_{k_{0}}=0
$$

so $\Delta_{K}=\Delta_{K_{0}}=0$
example: compute Δ_{K} where $T=O$

ξ

So $\Delta_{T}-1+\left(t^{-1 / 2}-t^{1 / 2}\right) \Delta_{K^{\prime}}=0$
above we saw $\Delta_{K^{\prime}}=t^{1 / 2}-t^{-1 / 2}$
so

$$
\begin{aligned}
\Delta_{T} & =1+\left(t^{-1 / 2}-t^{1 / 2}\right)\left(t^{-1 / 2}-t^{4 / 2}\right) \\
& =1+t^{-1}-t^{0}-t^{0}+t^{1}=t^{-1}-1+t
\end{aligned}
$$

exercises:

1) Compute $\Delta_{F}=-t^{-1}+3-t$ where $F=$
2) Compute $\Delta_{K_{2,5}}=t^{-2}-t^{-1}+1-t+t^{2}$ where
3) Compute $\Delta_{m(T)}=t^{-1}-1+t$ where

$$
m(\tau)=\theta
$$

in general, given a knot K and a diagram $D(K)$ of K we define the mirror of K, denoted $m(k)$, to be the knot with decigram obtained by switching all crossings of $D(K)$
4) In general, if K is a link with k components show

$$
\Delta_{m}(k)=(-1)^{k-1} \Delta_{k}
$$

Warning, this is harder than other exercises
Hint: use skein relation and induction on number of crossings
5) Show $m(F)$ is isotopic to F, where F is the figure 8

Remarks:

1) the above shows $U, T, F, K_{2,5}$ are all distinct knots but we don't know if T and $m(T)$ are distinct! (we will see they are)
2) Δ_{K} distinguishes, up to mirroring, all (prime) knots with ≤ 8 crossings (in a diagram) and most with 9 crossings
3) there are many knots with $\Delta_{k}=1$
(so cant be distinguished from unknot)
e. 9

4) It is not hard to show (you should try!) that 4), B), C) uniquely specify Δ_{K} if Δ_{K} is well-defined
Note: we have not show Δ_{k} is well-detivied. This can be done using Reidemeister moves, but it is much easier and more eulightuing to prove this with ideas we develop later in the course.
Δ_{k} can also be used to understand things about a knot!
For example
5) We will see that for every knot K there is a surface Σ in \mathbb{R}^{3} with boundary K
eg.

this surface has more
later we will make precise the idea that "holes" than
Σ has 2 holes and $\Sigma '$ has 4 holes
important and hard question: What is the smallest number of holes in a surface with boundary K ?
we will see

$$
\text { \# holes } \geq \text { breadth } \Delta_{k}
$$

biggest degree in Δ_{K}-smallest degree
example: from above any surface Σ with boundary $K_{2,5}$ must have at least 4 holes!

we see this later

$$
\Delta_{k}=t^{-2}-t^{-1}+1-t+t^{2}
$$

2) Given a knot $K \subset \mathbb{R}^{3} \subset s^{3}$, there is a surface $\Sigma \subset B^{4}$ with boundary K (we will try to visualize these later)
Very hard question: What is the minimal number of holes for such a surface? Can it be a disk?

does not bound a disk in \mathbb{R}^{3} (that is, K is not the unknot) but K does bound a disk in B'.
later we might see
it K bounds a disk in B^{4} (many k do) then there is a polynomial f with riteger coefficients such that $\Delta_{K}(t)=f(t) f\left(t^{-1}\right)$
example: from above (C) and (S) not bound disks in B^{4}.
3) Is there a function $f:\left(s^{3}-k\right) \rightarrow s^{\prime}$ such that $d f \neq 0$? Such a knot is called fibered and it is very helpful to know if a knot is fibered.
later we might see
If K is fibered, then the coefficient of the highest order term in Δ_{K} is ± 1
example: you can check $\Delta_{T_{w}}=2 t^{-1}-3+2 t$
where $T_{w}=(2)$
so T_{w} is not fibered
D. Jones polynomial
later we will prove that to any. link K (with a direction on each component) we can associate a (Laurent) polynomial, in the variable $t^{1 / 2}, V_{K}(t)$ with integer coefficients (when K a knot, $\Delta_{k}(t)$ only has integer powers of t)
such that A) K isotopic to K^{\prime}, then $V_{k}(t)=V_{k^{\prime}}(t)$
B) if K_{+}, K_{-1} and K_{0} have diagrams related by

then $t^{-1} V_{k_{+}}-t V_{k_{-}}-\left(t^{1 / 2}-t^{-1 / 2}\right) V_{k_{0}}=0$
c) $V_{\text {unknot }}=1$
examples:
4) let $\mathrm{O}_{2}=\bigcirc \bigcirc 2$ component unlink

$\mathrm{O}_{2}=K_{0}$

$k_{t}=U$

$K_{-}=U$
so $\quad t^{-1} V_{K_{+}}-t V_{K_{-}}-\left(t^{1 / 2}-t^{-1 / 2}\right) V_{O_{2}}=0$ and $\quad V_{O_{2}}=\frac{t^{-1}-t}{t^{1 / 2}-t^{-1 / 2}}=-t^{1 / 2}-t^{-1 / 2}$
exercise: let O_{k} be the k-component unlink $O O \cdots O$
then show $V_{O_{k}}=\left(-t^{1 / 2}-t^{-1 / 2}\right)^{k-1}$
Hent: viduction
5) let $T=O$ compute V_{T}

Unknot
so $t^{-1} V_{T}-t V_{U}-\left(t^{4 / 2}-t^{-4 / 2}\right) V_{K^{\prime}}=0$
let's compute $V_{k^{\prime}}$

$k^{\prime}=k_{+}$

$\stackrel{\mathrm{K}}{\mathrm{K}} \mathrm{S}_{2}$

Ko
」 unknot
so $\quad t^{-1} V_{k^{\prime}}-t V_{O_{2}}-\left(t^{1 / 2}-t^{-1 / 2}\right) V_{v}=0$
and $t^{-1} V_{k^{\prime}}=t\left(-t^{1 / 2}-t^{-1 / 2}\right)+\left(t^{1 / 2}-t^{-1 / 2}\right)$
so $V_{k^{\prime}}=-t^{5 / 2}-t^{3 / 2}+t^{3 / 2}-t^{1 / 2}$

$$
=-t^{5 / 2}-t^{1 / 2}
$$

now for $V_{T}: \quad t^{-1} V_{T}-t V_{U}-\left(t^{4 / 2}-t^{-1 / 2}\right) V_{K^{\prime}}=0$
so $V_{T}=t\left(t+\left(t^{1 / 2}-t^{-1 / 2}\right)\left(-t^{5 / 2}-t^{4 / 2}\right)\right)$

$$
=t\left(t-t^{3}+t^{2}-t+1\right)
$$

$$
V_{T}=-t^{4}+t^{3}+t
$$

exercise:

1) recall the mirror $m(T)$ of T is compute $V_{m(T)}=t^{-1}+t^{-3}-t^{-4}$
so $m(\tau)$ and τ are not isotopic!
(the Alexander polynomial and coloring cant see this!)
2) More generally show $V_{m(k)}(t)=V_{K}\left(t^{-1}\right)$ for any knot.
Hint: maybe wait till we have another definition of V_{k}
3) for $F=$ compute

$$
V_{F}=t^{-2}-t^{-1}+1+t+t^{2}
$$

note $V_{F}\left(t^{-1}\right)=V_{F}(t)$ which is good since $m(F)$ isotopic to F
Much studied unsolved problem:
Is there a nontrivial knot K such that $V_{K}=1$?

Unlike the Alexander polynomial, the Jones polynomial does not seem to "see" interesting topological things, but it can still tell us interesting things
Before we get to that, let's give another definition of V_{k} from which we can see that it is well defined.
given a diagram D for a link and a crossing c in D there are 2 natural other diagrams you con construct

denote by IDI the number of components of the link associated to D
a state s of a diagram is a choice of A or B smoothing at each crossing
example:

for a state s of D let
$\alpha(s)=$ number of A-smoothing of s
$\beta(s)=$ number of B-smoothing of s
$|s|=$ number of components of s
define the bracket of D by

$$
\langle D\rangle=\sum_{\substack{\text { all states } \\ s \text { of } D}} A^{\alpha(s)} B^{\beta(s)} d^{|s|-1}
$$

where A, B, and d are formal variables

So $\langle\cdot\rangle:\{$ Ink diagrams $\} \rightarrow \mathbb{Z}[A, B, d]$
is a well-defined function τ set of integer valued polynomials in the variables A, B.
example:

so

$$
\langle\Omega\rangle=A^{3} d^{2}+\left(3 A^{2} B+B^{3}\right) d+3 A B^{2}
$$

note: \rangle satisfies unlink with k components (only has empty state)

1) $\left\langle O_{k}\right\rangle=d^{k-1}$
2) $\langle Y\rangle=A\langle)(\rangle+B\langle へ\rangle$
exercise: 1) if this is not clear to you then prove it! (maybe look back at last example)
3) also show $\langle D \Perp 0\rangle=d\langle D\rangle$
lemma 3:
If we set $B=A^{-1}$ and $d=-\left(A^{2}+A^{-2}\right)$ then $\langle\cdot\rangle$ is invariant under Reidemeister moves II and III

Proof:
II)

$$
\begin{aligned}
& \left\langle\lambda^{\prime}\right\rangle=A\left\langle\lambda^{\prime}\right\rangle+B\left\langle\dot{C}^{\prime}\right\rangle \\
& =A(A\langle\hat{\sim}\rangle)+B\langle \}\{ \rangle)+B\left(A\left\langle\begin{array}{l}
\hat{i} \\
\sim
\end{array}\right\rangle+B\langle\underset{\sim}{\underset{\sim}{v}}\rangle\right) \\
& =A B\langle)(\rangle+\left(A^{2}+B^{2}+A B d\right)\langle\cup\rangle
\end{aligned}
$$

so for $\left)^{\prime}\right\rangle$ to equal $)(\rangle$
we need $A B=1$ so $B=A^{-1}$
and $A^{2}+B^{2}+A B d=0$ so $d=-\left(A^{2}+A^{-2}\right)$
(you can check other type II) moves give same rel',
III)

$$
\begin{aligned}
& \left\langle\lambda /\langle \rangle=a\langle\sim\rangle\langle \rangle+A^{-1}\langle\sim \sim\rangle\right. \\
& \text { " } 11 \text { by type II) invariance } \\
& =A\langle\lambda\rangle\left\langle\langle \rangle+A^{-1}\langle\lambda\rangle\right. \\
& =\langle\lambda\rangle\rangle
\end{aligned}
$$

With $B=A^{-1}$ and $d=-\left(A^{-2}+A^{2}\right)$ we get $\langle K\rangle$ a polynomial in the variable A. This is called the Kauffman bracket of K
example: \langle,

$$
\begin{aligned}
\rangle & =A^{3} d^{2}+\left(3 A^{2} B+B^{3}\right) d+3 A B^{2} \\
& =A^{3}\left(-A^{-2}-A^{2}\right)^{2}+\left(3 A^{2} A^{-1}+A^{-3}\right)\left(-A^{-2}-A^{2}\right)+3 A A^{-2} \\
& =A^{3}\left(A^{-4}+2+A^{4}\right)-3 A^{-4}-3 A^{3}-A^{-5}-A^{4}+3 A^{-4} \\
& =A^{7}-A^{3}-A^{-5}
\end{aligned}
$$

What about Recdemeisth type I) move?

$$
\begin{aligned}
& \longmapsto \\
\langle P\rangle & =A\langle\mid 0\rangle+B\langle D\rangle \\
& =(A d+B)\langle 1\rangle \\
& \left.=\left(A\left(-\left(A^{-2}+A^{2}\right)\right)+A^{-1}\right)\langle)\right\rangle \\
& =-A^{3}\langle 1\rangle
\end{aligned}
$$

$$
\text { and }) \longmapsto>
$$

$$
\begin{aligned}
\langle,\rangle\rangle & =A\langle 1\rangle+B\langle\mid 0\rangle \\
& =(A+B d)\langle)\rangle \\
& =\left(A+A^{-1}\left(-\left(A^{-2}+A^{2}\right)\right)\right)\langle 1\rangle \\
& =\left(-A^{-3}\right)\langle 1\rangle
\end{aligned}
$$

to $f i x$ this we define the writhe of D as follows:
for an oriented diagram D set

$$
\varepsilon(\lambda)=1 \text { and } \varepsilon\left(\lambda^{\lambda}\right)=-1
$$

\uparrow right handed left handed crossing
the writhe of D is

$$
\omega(D)=\sum_{c \text { crossings }}^{c} \varepsilon c^{c}
$$

2) $\omega\left(x_{-1}^{-1} x_{-1}^{-1} x\right)=\omega\left(x_{-1}^{-1}-x_{2}^{-1}\right)$ and similarly for other type III) moves
3)

So if we set $F_{D}(A)=(-A)^{-3 \omega(D)}\langle D\rangle$ for an oriented diagram I then $F_{D}(A)$ is invariant under all Reidemeister moves! so $F_{D}(A)$ is an invarcant of the link associated to D

$$
F:\left\{\begin{array}{c}
\text { oriented } \\
\text { links }
\end{array}\right\} \rightarrow \mathbb{Z}[A]
$$

$$
\begin{aligned}
& \omega\binom{0}{x_{-1}}=\omega(\lambda)-1 \\
& \omega\binom{\stackrel{1+1}{R}}{R}=\omega(\lambda)+1
\end{aligned}
$$

example:
for $m(T)=$ we have $\omega(m(T))=-3$
so $F_{m(T)}(A)=-A^{9}\langle T\rangle=-A^{9}\left(A^{7}-A^{3}-A^{-5}\right)$

$$
=-A^{16}+A^{12}+A^{4}
$$

exercise:

1) it $T=(1)$, then show $F_{T}(A)=-A^{-16}+A^{-12}+A^{-4}$
2) Show $F_{m(K)}(A)=F_{K}\left(A^{-1}\right)$
3) it \bar{K} is K with the opposite orientation then $F_{\bar{K}}(A)=F_{K}(A)$
4) If O_{k} is the k component unlink then

$$
F_{O_{k}}=\left(-A^{2}-A^{-2}\right)^{k-1}
$$

Th ${ }^{m}$ 4:
if K_{+}, K_{-1} and K_{0} have diagrams related by

then

$$
A^{4} F_{K_{+}}-A^{-4} F_{K_{-}}+\left(A^{-2}-A^{2}\right) F_{K_{0}}=0
$$

Proof:

$$
\begin{aligned}
& \langle Y\rangle=A\langle)(\rangle+A^{-1}\langle\backsim\rangle \\
& \langle\lambda\rangle=A\langle\backsim\rangle+A^{-1}\langle)(\rangle \\
& \therefore A\left\langle K_{+}\right\rangle-A^{-1}\left\langle K_{-}\right\rangle=\left(A^{2}-A^{-2}\right)\left\langle K_{0}\right\rangle \\
& \omega\left(K_{ \pm}\right)=\omega\left(K_{0}\right) \pm 1
\end{aligned}
$$

$$
\begin{aligned}
\therefore & F_{K_{+}}=(-A)^{\cdots-}\left\langle K_{+}\right\rangle \Rightarrow(-A)^{-3 \omega_{0}}\left\langle K_{+}\right\rangle=(-A)^{-} F_{K_{+}} \\
& F_{K_{-}}=(-A)^{-3 \omega_{0}+3}\left\langle K_{-}\right\rangle \Rightarrow(-A)^{-3 \omega_{0}}\left\langle K_{-}\right\rangle=(-A)^{-3} F_{K_{-}} \\
& F_{K_{0}}=(-A)^{-3 \omega_{0}}\left\langle K_{0}\right\rangle
\end{aligned}
$$

and we have

$$
A^{4} F_{K_{+}}-A^{-4} F_{k_{-}}-\left(A^{-2}-A^{2}\right) F_{k_{0}}=0
$$

note: if we set $V_{K}(t)=F_{L}\left(t^{-1 / 4}\right)$ then we see V_{K} satisfies
A) V_{k} an invariant of isotopy class of K
B) $t^{-1} V_{k_{+}}-t V_{k_{-}}-\left(t^{1 / 2}-t^{-1 / 2}\right) V_{k_{0}}=0$
C) $V_{\text {unknot }}=1$
ne. V_{K} is the Jones polynomial! and now we know it is well-deficied!
E. Alternating Links
a knot diagram D is called alternating if over and under crossings alternate as you traverse the knot
(l) alternating

a link is alternating if it has an alternating diagram an alternating decigram is called reduced if there is no embedded circle in \mathbb{R}^{2} intersecting the diograme transversely one time at a crossing

